Modeling and Algorithms for Aggregated Data

Databases in domains such as healthcare are routinely released to the public in aggregated form to preserve privacy. However, naive application of existing modeling techniques on aggregated data is affected by ecological fallacy that can drastically reduce the accuracy of results and often lead to misleading inferences at the individual level. The project by Prof.

Detecting Sponsored Recommendations

With a vast number of items, web-pages, and news to choose from, online services and the customers both benefit tremendously from personalized recommender systems. Such sys- tems however provide great opportunities for targeted adver- tisements, by displaying ads alongside genuine recommendations. We consider a biased recommendation system where such ads are displayed without any tags (disguised as genuine recommendations), rendering them indistinguishable to a single user. We ask whether it is possible for a small subset of collaborating users to detect such a bias.

Scheduling for Stream Computing in the Cloud

Motivated by emerging big streaming data processing paradigms (e.g., Twitter Storm, Streaming MapReduce), we investigate the problem of scheduling graphs over a large cluster of servers. Each graph is a job, where nodes represent compute tasks and edges indicate data-flows between these compute tasks. Jobs (graphs) arrive randomly over time, and upon completion, leave the system. When a job arrives, the scheduler needs to partition the graph and distribute it over the servers to satisfy load balancing and cost considerations.

Generalization of Standard Matrix Completion

Joydeep Ghosh and student Suriya Gunasekar work on the generalization of standard matrix completion in various aspects. In previous work, we have proposed tractable estimators for matrix completion with observations arising from heterogeneous datatypes and heterogeneous noise models. In a more recent work, we focus on consistency results for the collective matrix completion problem of jointly recovering a collection of matrices with shared structure.

Bayesian Sparse Principal Component Analysis

Several real-life high dimension datasets can be reasonably represented as a
linear combination of a few sparse vectors. Succinct representation of such data with a few selected variables is highly desirable for such cases. A Bayesian setup is useful because the limitation of knowing a limited number of high dimensional data points can be alleviated by well-designed domain-specific priors.

What multislope path loss models tell us about the fundamental limits of wireless network densification in 5G and beyond

A vast majority of the increased mobile data throughput has been enabled by ever-increasing densification, i.e. adding more base stations and access points that have a wired backhaul connection.  This trend is set to continue for the next decade at least, primarily through the provisioning of small cells such as pico and femtocells.  What if we reached a point where adding more infrastructure did not allow increased wireless network throughput?  This would be comparable to the impending end of "Moore's Law"; a cataclysmic event having far-reaching consequences.

Networks-of-Systems Simulation

In future computing systems, such as the Internet-of-Things (IoT), functionality is increasingly defined by the networked connectivity of spatially distributed devices. This, however, poses fundamentally new design challenges and tradeoffs. Computation and communication need to be tightly coupled and jointly explored, e.g. to determine whether a functionality should be performed locally or remotely over the network in order to achieve the best performance and energy consumption.

WNCG Faculty and Students Showcase Innovation During SXSW 2015

An incubator of cutting-edge technologies and digital creativity, SXSW Interactive 2015 featured five days of presentations and panels from the brightest minds in emerging technology. Special programs showcased new websites, video games and startup ideas from the community.

WNCG at SXSW Interactive 2015

WNCG Faculty and students met on Sunday with researchers from the Center for Transportation Research (CTR) and other UT Austin Cockrell School Engineers during the first-ever UT Village at SXSW Interactive 2015. 

This year's event featured panels and interactive research demonstrations and was open to all SXSW Interactive 2015 Badge Holders. Click the image below to view the complete slideshow from the day's events.



Subscribe to RSS - WNCG