Path Loss Models

Resolution-Adaptive Hybrid MIMO Architectures for mmWave Communication

Moving to a millimeter wave (mmWave) spectrum in range of 30-300 GHz enables the utilization of multi-gigahertz bandwidth and offers an order of magnitude increase in achievable rate. The small wavelength allows a large number of antennas to be packed into transceivers with very small antenna spacing. Leveraging the large antenna arrays, mmWave systems can manipulate directional beamforming to produce high beamforming gain, which helps overcome large free-space pathloss of mmWave signals.

Understanding Ultra-Dense Cellular Networks: Multi-slope Path Loss Models and Analysis

Existing cellular network analyses, and even simulations, typically use the standard path loss model where received power decays 1/d^x over a distance d, with a pathloss exponent x. This model leads to tractable analysis of downlink cellular network performance with base stations distributed by a Poisson point process. However, it is widely known that this standard path loss model is quite idealized, and that in most scenarios the path loss exponent x is itself a function of d.

Subscribe to RSS - Path Loss Models